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S 0"- ' "In previous theor tical treatments of the stability of the compressible
* laminar boundary layer the effect of the temperature fluctuations on the

"0."viscous" (rapidly-vary ) disturbancestoseither Ignored (Lees-Lin), or1.4

' is accounted for incom 7 tely (Dunn-Lin). A thorough reexamination of
A this problem shows tha temperature fluctuations have a profound influence

on both the "inviscid" (slowly-varYing) and viscous disturbances above a
04 Mach number of about 2. 0. -Th*-0e. analysis Includes the effect of
1043

_ :temperature fluctuations on the viscosity and thermal conductivity, and also

S~thnoa r.•cl- t reatm ent a.

SSome important results of the present study are: (1) tnstead of

being nearly constant across the boundary layer the amplitude of the
. inviscid pressure fluctutions decrease* markedly with distance outward

Ifrom the plate surface for Mach numbers greater than 3. This behavior

.means that the Reynolds shear stress near the critical layer is greatly

reduced4,,Z) At Mach numbers less than aba*-2 dissipation effects are
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minor, but thay become extremely important at higher Mach numbers and

tend to becomno tho domulaant effect for hypersonic Mach numberu5<

(3r the rate of convernion of energy from the mean flow to the disturbance
flow through the action of viscosity at the wall Increases with Mach numb~er(
(4) theo hufinimUfl critical Reynolds nurtber for insulated flat plate boundary

<*P

layers deci eases in the range 0 x 3, and then rise, vary sharply for
hypersonic Mach numbe

Numerical exampie~ llustrating the effects of compressibility

(including' neutral stability Airacteristics) are obtained at Mach numbers

of 2. 2 and 5. 6. The calcula ed neutral stability diagrams are compared

with the experimental results of Laufer and Vrebalovich at M a2. 2, and

of Domeotriados at M a 5. S.

LIST OF SYMBlOLS

041mansional Dlimensionless Referenc*
Quantities, Quantities Quantities

Positional
Coordinates:

longitudinal X* x qe(*Uý)

no rmal y*y i Xe (x*/uV)

*Titte t* t (U **4 V) (X*/u*)

V 'locity,
Components:

longitudinal as ."I-0 e ()f1yes"-C

normal V* &V*fV~o Vy)*0y'
a

Pressure raey , rty CU A ct

Tempe rature Ta 5r*' r(y)+LRY)ew(X ýTe

viscosity g =~I1

Thermal .~k .~ i~xe)cp
CoductivityP



Dimensional Dimensaionleis Refer"enc
Quantities Quanif'k.Vs cluantities

Wave Lon gth A(L/ 6~)

Wave Number Pe/A

Disturbance
Propagation C* 4
Velocity

F inviscid f function

(Y-l) M0 c
K

I length of plate

M ýlocal Mach number out side the mean boundary layer

MRELe 4-c)Mach number In wave coordinates

Qfx, y. t) quantity of. the total flow

UC(x. y) mean or steady component of flow quantity

Q'(X, y. t) fluctuating component of flow quantity

q(y) fluctuation amplitude

R* gas consta~nt

Re Reynolds number based on reference length

Re9  Reynolds number based on momentum thickness
Re ref Reynolds, number based on reference length but with fluid

properties evaluated at T ref
To stagnation temperature of external strea m

Tref reference temperature of mean boundary layer
momentum thickness wave nu mber. ZrQ/A

r ratio of specific heats

6w thickness of viscous layer near wall
small parameter (aRe)-

smal paametr (~e -I frpeetodrn
small arameer (crer)forpeetodrn

9boundary layer momentum thickness

wave length'of disturbance
kinematic viscosity

Prandtl number
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r Rqynolds utriss

-(y) inviscid 4 function
Subucripta

c quantity evaluated at critical point
a local condition outside mean boundary layer (external)

I imasginary part of quantity

Inv InviAcid
s qtAntity for neutral inviscid disturbance

V viscous
w quantity evAluated at the wall

A bar over a quantity indicates mean value.
Primes generally denote differentiation with respect to y. The few instances
where prime@ denote a fluctuating quantity should not cause any confusion.

1. Introduction

Experimental results obtained by Laufer t * and Vrebalovich at
. 2. 2 furnish definite proof of the existence of Tollmlen waves in the

supersonic laminar boundary layer on an insulated flat plate. The general
shape of the stability diagram in the co - Re. plane does not differ much
from that found at low speeds; however, the minimum critical Reynolds

number and the wave numbers and amplification rates of the self-excited
disturbances are much lowe,. Tollmien waves were also found by DemetriadesZ
in the laminar boundary layer of an insulated flat plate at Me = 5.8. Here the
minimum critical Reynolds number seems to be about one order of magnitude

larger, while the characteristic wave numbers and amplification rates are

even lower than at Me = 2. 2.
These experimental studies stimulated a reexamination of the whole

theoretical basis of laminar stability at high Mach numbers. In the earlier
treatments of Lin3 ' 4 and one of the present authors, it is tacitly assumed
that the critical layer (wave speed = flow speed) lies close to the surface,

so that the flow velocity with respect to the wave is small in the region
between the surface and this layer. In that case the rate of change of

density (or temperature) following a fluid particle is small for the "viscous"

* Superscripts refer to references listed at the end of the paper.
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.rapidly-varying) disturbances, and those disturbances are treated as

essentially Incompressible. Dunn and Lin pointed out that this conclusion

is valid for subsonic or slightly supersonic speeds, but not for higher

supersonic speeds, because the critical layer is no longer "close" to the

surface. They obtained the "first-order' effect of temperature fluctuations

on the viscous disturbances through the continuity equation, and they

discussed the importance of the ther,,al boundary condition. However,

only the so-called "leading terms" are retained in the energy and momentum

equations. No numerical calculations utilizing this method are available.

At high Mach numbers the temperature fluctuations are dominant,

and viscous dissipation must become important. In the present study we

want to retain these effects, so far as possible. Even for the "inviscid"

(slowly-varying) disturbances previous treatments have employed

approximate methods valid only up to moderate supersonic speeds, and for

wave velocities not too close to free-stream speed. New methods must

now be developed to cope with high supersonic and hypersonic speeds.
Only the simplest gas Is considered here, namely one with constant

specific heats, -constant Prandtl number and constant chemical composition.

Of course the temperature dependence of viscosity and thermal conductivity

is taken into account. The laminar boundary layer is idealized an a plane,

parallel flow, and each total flow quantity is regarded As being composed of

a mean component which depends only on the distance normal to the plate

surface, and a fluctuating component of infinitesimal magnitude. Thus
SQ(x, y, t) . (y) + Q' (XI y, t) .

With these assumptions the coefficients of the linear partial differential

disturbance equations are independent of both x and t, so that a disturbance

of the form

Q'(x, y, t) : q(y) etQ~" ct)
is suggested. Here q(y) is a complex amplitude and c is the complex phase

velocity. The real part of c c is the dimensionless velocity of wave

propagation parallel to the surface, while ac1 gives the amplification (or

damping) rate.

The total flow must satisfy the same boundary conditions on the

velocity as the original steady mean flow, so that the longitudinal and normal

velocity fluctuations vanish at the surface, I. e., fw = 0 and 0. In
general the thermal boundary condition at the surface states that the

r instantaneous temperature and heat transfer rate are continuous across the

solid-gas interface. However, most surface materials are so highly'



conductive compared to gases that the temperature fluctuations at the surface
are almost completely suppresused at the frequencies of interest (or laminar

stability. therefore we tako 0 u 0. In Section 2 we show that for disturbances
propagating at subsonic velocities relative to the free stream all disturbance
amplitudes vanish far from the 'plate ourfa1ceieqy).0a - .

ýThe purpose of the present paper is to bring out the physical
mechanisms and main theoretical problem. of, larninar boundary layer

stability at. high Mach numbers. fletails of the mathematical treatment
(including the general thermal boundalry condition al + b 0~m) are
-contained In Reference 6. In Section 2 we delineate the principal disturbance
flow parameters and regions in coordinates fixed In the wave. Section 3
is concerned with the mechanisms of production of disturbance energy at
high speeds, and the conclusions to be drawn from the energy balance for
neutral disturbances c1 in 0). In Section 4 somac aspects of the eigenvalia.
problem are discussed,. with particular emphasis on the role of the
temperature futtosand aome numerical examples' are presented
for an insulatednfat plate in air at M 2. 2 and 5. 6. Finally, in Section 5
we sumnmarize our conclusions and the present state of our knowledge
(and Ignorance) of lamninar stability at high Mach numbers.

2. Flow Region$ and Parameters In Coordinates Fixed In the Wave

To an observer riding with the wave the entire flow field is steady.
The uniformi free stream is moving to the right with the velocity 1 - cr, while
the plate surface Isa moving to the left with the velocity Cr fSee sketch on
page 7.) The present discussion, is concerned only with disturbances
propagating at subsonic velocity relative to the free stream. In other words,
the re lat ive Mach number (MRE) ' < c1, r >rrllM

In such a steady, subsonic flow of unlimited extent it Is welt-known that all
small disturbances die out* with distance lika P-Py as y-.00oo where

2 2 2p~~ a Ii -~M ) ilM I-c)
e e r

The restriction to subsonic relative motion evide~ntly does not apply
to the plate. surface. In wave coordinates the plate Mach number In given by

(MRE~ M0 Cr //~~For an insulated surface and Pr 1. ",one finds

(Me, r./ ) IwnMe J 2. Z (approximately, for )y 1.) aTu



C7

W-0-

-
-- 

-- 

--

for M a 2. 2 the flow is everywhere subsonic with respect to the wave, but
for M e >, 2. 2 a supersonic flow region exists near the plate surface. In fact,
when M >> 1, c -4-1, and (M c/(* FT -.-4s .ý In this limiting cameth oi ie deie by th

thesonc lnedefnedby herelation M0 (w -c) 2 T occurs at w a Z/3*.
The existence of an extensive supersonic flow region for sufficiently

high M0 has a profound effect on the amplitude distribution for the "inviscid"
pressure fluctuation between the plate surface and the critical layer (w uc).

At he lat sufac ~0 NV~ ~0. therefore, in wave coordinates the
amplitude of the pressure fluctuations near the plate surface satisfies the
'Pranidtl-Glauert'equation for a wavy disturbance in a steady, uniform flow',
namely,

~ [MRELZ~]i 1
From Eq. (1) one sees that the amplitude of the pressure fluctuation

decreases initially with distance away from the plate surface if MELl

* This sonic line does not intiodu e an r al in u rtesi o th

linearized disturbance equations for a shear flow 3
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and Inc Ir ases'if Xt 1. If tho 1.y-coorId Ii nato Is normall zed by rn.ean s of

tili llow~rth-Djo roUniyn transformation Y *s ad/,to Eq.'(1) become#*

z2
d +a Tw L(M REL)W2 W1 0. (2)

d'2 2 2 4
1n other words the proper parameter is not a but a T~ Ovo a (or

an inaulated plate. At subsonic or Slightly sues (i roe -stream speeds

.2 0, m0(d and the Increase In pressure amplitude between the plate

surface and the critical layer is small. But at higjh supersonic and hypersonic

speedis a2 TZ is no longer small, and (MRELw)~ 1, so that the decrease in

pressure fluctuatipn amplitude outward to the critical layer is substantial.

This Phenomenon is not property accounted for In previous theoretical

treatments3
, because the inviscid solutions are obtained by employing

series expansions in powers of a *Since (k is supposed to be small, It

is tacitly assumed that I Wc/lw ~u0(1). The fact, that Iww ,2 /W < 1 at

-high M, has a strong influenc, on the Reynolds stress increment (or decrement)

at the critical layer, and therafore on the energy balance for a neutral

disturbance (Section 3).

The distinction between subsonic and supersonic flow regions in

coordinates fixed in the wave makes sense only if the disturbances are

largely "invtsc id" (slowly-varying), as proposed originally by Prandtl.

Viscosity and conductivity are important in two regions: (1) at the plate

surface. where viscous Solutions must be added to the inviscid solutions In

order to satisfy the boundary conditions *ri 0, 0~ a i 0; (2) at the

"critical layer" (w a c), where the longitudinal transport of vorticity and

"be at energy with respect to the wave vanishes, and the vertical transport of

these quantities must be balanced by viscous diffusion and heat conduction.

Clearly the proper local Reynolds number in Coordinates fixed In the wave is

a I (w - cr) At the plate Surface t he parame ter *R Is a

measure of the diffusion distance for vorttcity during one period,.** so

this inner boundary layer is thin when aRe > > I. Similarly, the parameter

*Since ~IV~w = 0. irW 0.

**The -parameter ~ R c~ measures the corresponding diffusion

distance for heat energy, where cr 'ts the Prandtl numrber.



L e., th@ "inviscid" temparakture fluctuations norfna~lized by the free stream
temperature are of order M ilecduse of the boundary condition

~0 IV~w+ *0 *the "viscous" temperature fuctuations are also ofIN V
order M. Now the gradient of mecan temperature, io of order M and

so h.whley leI of mean temperature in the boundary layer when M* > )o I

In other words the free stream static temperature is no longer relevant, and
must'be replaced by some representative tornperature T R~r V M* T*

For example, the now parameter that orders the viscous terms in the
'equations of motion io given by ,whore Re Re

(alle~F RREF

'therefore, 0 A E * where E Is the old parameter (*Re) 1 ., For a

linear viscosity temperature relation -WvM me Terms In the equations of
.,motion arising from the normal gradients of mean or fluctuating viscosity

and conductivity, or from the viscous diessipation, were regarded as of order
ýE In References' 3, 4. and 5 compared with the "leading" viscous terms,

but they are actually of order .At high supersonic or hypersonic free

stream speeds these terms are likely to be of the same order as the so-called
"Ileading terms" (Section 4).

3. Energjy Balance and Reynolds Stress Distribution-for a Neutral Di sturbance

For a neutral disturbance the net rate of transfer of energy per cycle

to the disturbance by the action of the Reynolds stress P' U - v must be

balanced exactly by the rate of dissipation of disturbance energy per cycle.

As expected, the dissipation term Is linear in the viscosity and is therefore

of order l/aRe. It Is somewhat less obvious that the Reynolds stress also

depends on viscosity because of the phase shift in disturbance velocities

introduced near the plate surface. "The Reynolds stress distribution across

the boundary layer for aRo )> 1 (Section 2) isa sketched an page 11. [The

rate of transfer of'energy to the disturbance is given by j -V(dlu/dy) dy dx]

ýThe Reynolds stress rises rapidly with distance away from the plate surface

2ý w
in zne f hiknes'',and then remains practically

constant in the nearly-inviscid region between the surface and the critical
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-layer. Since r' -00.0 far fronm the surface, r must be cancelled by an equal
and opposite jump In Reynolds stesat t ricllyer, When

nRC ~- c)) 1 ,this jump can be calculat d from th icdslton*

(Saction 1); viscosity and conductivity merely smooth out tha transition. Thus

y+ 0

Let us now examine each of these regions of Reynolds stress production
(or destruction) separately.

(a) At the plate ~urface

For a fictitious invisc id, non-conducting Cas~only the Inviscid solutions

Apply. All disturbances vanish far from the surface, and the normal velocity

-fluctuation vanishes also at the plate surface. However, the inviscid tem-

.,pe'rature and longitudinal velocity fluctuations generally take on non-zero

values at the surface. Now, for a real gas f 0 and 0 =0, no matter
- w

:,how'small the viscosity and thermal conductivity. Thus one must add viscous

solutions determined by the conditions (f (- V1 rwW and (9vw) (- N 0lvw

a. as y,- w (See sketch on page 12.) By considering only the
leading viscouis terms in the momentum and energy. equa tionsa in a thiný

layer near the plate surface, and recognizing that 40 and w7- 0 there, one

finds the approximate, vi scou s solution~s



Comnplete Solution

Viscous Solution ~ Inv

f I Inviscid Solution

(f~u-(tInv 0 i n)

'V tINV)w

wwwhew. ~ IMT - a u hs diioa eprtr n
longitudinal velocity fluctuations induce an increment in, normal velocity
fluctuation across the boundary layer. According to the equation of
continuity andt the equation of state

8V* rau* 1 dp* I dT* 1(0
.,or

~v ' 
t v-(ic/Ti Q0 0 (1)

Dyutilizing Eqs. (3) a nd (9) in Eq. (11), employing Eq. (6), and
recognizing that 0 y (w) 0, one obtains
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I 0 dy W W ~~o

TINV~w +K'r )
whore

) IB 113)
W____

:But

so that

~IN~w(14)

where (,Lisgiven by Eq. (U2), and the inviscid solutions must now be
altered slightly to satisfy the boundary condition at the wall. The situation

here to somewhat analogous to the streamline displacement effetit produced

in the external Inviscid flow by the 'Mean boundary layer.

It ts precisely the fact that (g5 N) 0. for aRe large but not Infinite

that gives rise to the Reynolds stress associated with the inviscid solutions.

Now t'u-pu 7- soht

r. -(P/2)a R! (10 . 15

By employing Eqs. (12) -(15), one finds

£NV~~ A :-- ~N~ I (+ K ) W (16)

(Note that r is8> 0 and I of order, -.2. As the Mach number MINV ..e~

increases itncreases [Eq. (13)1] and the Reynolds stress near the plate

surface Increase .9

(b) Across -the critical layer (w =c)

The magnitude of the jump in Reynolds stress across the critical
layer is given by the behavior of the inviscid soltinthr3

Iwheren ter

*C/-)cT (fTI

w (C), wr c

P 3
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(q. (5) connectinig If )And Ww h~ts A Iready bo on Witiliad.] In the
INVYWw

limit aRe -4.o i r (al4  )6 ~-.'- [Eq. (16)1,, and the Reyno~ld~s stress

vani14hes: everywhere. Thun the necessary jnnd sufficient) condition for the
existence of a noutrttl Inviscid diiturbanco' in thAt (d/dy)(w/ T) a 0 for some

I 1 - (1/M) (Hefervnco 3). Tito value of wuc for which this condition
is satisfied is :shown In lFIgu ro 1. Whlen c >c 1  (d/dy)(W/T) ~0 and

y 0

0 c 0 ,so thai a neutral disturbance ca n in fact exist when alke

Is lrobut finite. Evidently the magnitude of this ajump in r depends

critically on the ratio oIt /tW
In Section 2 It wa s shown that the amplitude of the pressure

fluctuation decreases with distance away from the plate surface at high

supersonic speeods. A quantitative estimate of this decrease is obtaineid

from the solutions of the Inviscid equations for a neutral disturbance

(c u 5 .By employing Eqs. (3) and 10) non obtains

and the momentum equations parallel and normal to the plate surface yield

I P(w- C) f +,Pw'0 . (19)

a 2 (W20)

By eliminating f and 0one obtains a single differential equation for wy. It
turns out to be, more convenient to Introduce the Riccati transformation

'2 2G X (W'I/a Wr) G1AL )(d/dy) log Wr

and the differential equation for G Io (Reference 6)

2 21

At -the plate surface G 0 when aRe jo a and w~e obtain Eq.,(1) of Section 2.
:In Fjgure 2 the results of a number of numerical integrations of

Eq. (21) are shown for an insulated plate surface, based on the mean flow
-profiles calculated by Mak Telcto ftec itia layer coincides

with the most outward zero of G. ,The behavior of the slope at y =0 follows

the prediction made in Section 2. 'Since the area under each curve out to



any distance front thic sutrface I" pro l aportional to the logarith -of the
pressure fluctuation timplitudo at that Iocation, It in -lit that V
decreases markedly with increasing Mach numibe'r at highi M0  -In'Figuro 3
the ratio w1win plotted am a function of M0  B elow M Z* 50, (if /Wvi,) 0(l).
The integrations *also yield the 61genvaluesn (aQ~ and thone values are shown
in Filgure 4. the valueo of (a~~l Very arnall wheni C0 ~ 1, Inc reases In
the subsolnic. range, and (after a'dip near 'M a 1. 7), 'roachesa A maximurn at
about M, 5# 0. Becyond thin Mach, numbar (a~) approaches the asymptotiC.
.behavior (d0 ) ~v-/MZ

By 'referring to Eq. (17) and Figure 3, one sees that the stabilizing
(or destabilizing) action of the jump In Rleynolds strong at the, criticalI lay.?
decreases rapidly at high Mach number. According to Eq n. (7), (16), and
(17) the condition for a neutral disturlxance Is

~~ t~~0(c.)I c"'

This relation io strictly applicable only when aRe >> 1. I.eo., along the
,''upper branch", of the curve of neutral stability in the a -. Re plane. When

M<2.5 J /cW Z 0(1) *and the principal effects of Increasing Mach
number are to shift c r to hig~her values (c r *1-,(!/Me) , and to Increase
the rate of production of disturbance energy near the surface. As indicated
by the factor (1I K ~T) in Eq. (22), this l1. eecshfsteegnalues

along the uipper branch to still larger values of aRe, and is essentially
i'destabilizin.

A t hypersonic spco'dns on the othier hand, the behavior of the
_quantity v (c) jWc/w , is the dominant factor. The variation of this
quantity with c r 'is Indicated schematically in the accompanying sketch.
'Of course v(c)= 0,ý and the product v jc) it i/iff at first increases

withIntra > BU c/ww < < I(Figure 3), and, moreover,

ff~ decreases with increasing c r*Tu hspouti lays er
small numerically, reaches a'Maximumn at some value of c > c5 ,:and

-then decreanes in" va~lue' again as cr ý1 1. Ac cording to Eq. (22) this
beavormen tata~ dceases rom infinity to some minimum .(but

very large) value, and then increases again. Thus the neutral stability
crein the, a Re plane for cnRe > > I is clsdioltdoo Dafd

studies bear out this unexpected conclusion'(Section 4).-



* Since the absorption (or production) of energy near the critical
layer becomes progressively less Important with increasing M0 * vscous
dissipation must become more Important, In order to counterbalance the

production of disturbance energy near the surface. But viscous dissipation

'OvQ/aRe). 'so that the major stability problem occurs at lower values of
%LRe, where the asymptotic expansion procedures hitherto employed may

become Inadequate. For an insulated sa rface K (Eq. (13) approaches a

limiting value of Z for M 2 > > 1. Thus alte at first decreases with

Increasing Mach number, and then possibly "levels out". In that case the

rapid. decrease In a v(I/M0
2 would eventually Insure a rapid increase

icrtcal Reynolds number with Increasing Mc unuber at hypersonic

speed ..

4. Eigenvaluo Problcm for Ncuta Dturbaces

Because of the Increasing importance of viscous dissipation at high
Mach numbers and the increasing relative magnitude of the temperature

flictuations, one is justifiably suspicious of ordering procedures based on

the well-known parameter 6 *v l/(aRe). In fact the full linearized disturbance

eqluations may be required. Nevertheless, in order to probe further into the

nature of the high Mach number stabiity problem, we shall provisionally

retain Prandtl's "splitting" of the solutions into "Viscous" and, "invi acid".

However, we keep terms in the disturbance'equations associated w7th

normal gradients in fluctuating viscosity and conductivity, and. with viscous

disipaio, hthetonegectd.For example, in the energy equation the
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heat conduction torml (ODy*)(k* T*)gv.rstohreers
Anyvolving iucconslyely th 3 oucond an 'A first normA I dari vatives ,of 0f and

Order Terin

I 0" (th 10 o-caliod "loading term"
In the older'lanilysai)

E z/r)f(ý4/dT) -0' To Ione contr i ution comeos from the
1: r:Adibnit i n fluctuating conductivity.'

the other fromr the gradient in
tempierature fuct ion

(Qkj)(dp~/dT) T11 (fluctuntling conductivity)

in addition there I o a terhi - a.? r~ini from onitih he~at conduction

A8/0x*)(k' ) this term is of order ft~ compared to 0". If terms

of order are to be included, then to be consistant one should also include
the a j term's arlinidn f rom at crmwiso gradients. In 'the pentnalysio

only terms of order I azad are retained; thus, this study amounts to a
frs-rder" investigation of the high M.c nubrefcs. Thisa procedure

alno has the important advantage that all viscous solutions are functions only'

of the single parameter ciRe (for a given flow), while the inviscid solutions
are functions only of a

~TO this approximation the energy equation for the viscous disturbances
is as follows:

0" (21,U) (4~/dT TVol + Zgr-lqo-mc2 wjf' nlkeaJw-sl.gOci) (23)

In the Dunn-Lin analysis only the fir st and last terms on the left-hand side
:of Eq. (23) appear, and the term containing the normal velocity fluctuation

is also dropped because is supposed to be of order 6 . Similarly in the
present study the equation of continuity for the viscous disturbances ts

i(Wv-c) 91.0 *(4

and the only te dopd is the pressure fluctuation term, which is of

order ~ .In the Dunn-Lift analysis the term is also dropped. In
the Lees- Lin,' study this term adthe cprauefluctuation term, do

not appear, because thc analysis is limited essentially to case's for which

w-c 0().In other words the viscous disturbances are essentially

incompressible' in the Lcec Ii anlas an hevsostmperature

.fluctuations are irrclevant, 'so far as the eigenvalue problem Isa concerned.
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In the prsn tudy uh twvoeiut equations for the viscous

disturbances including terms tof orderI and 1reduce to thu following

single equation:

2 d I d _~ Wý)[Of w
(11 +" V 9l w.V 0 (25)

In I+Ra ferences 3-5 -only tho 'terms containing V"' and (',are retained.
ýEvidcntly the three equations _4s 23 25) ar lsly, cop0

an ut be integ'rated simultaneously. 'Two lincearly1 it' epeden e o

Solutions are distinguished by thoir behavior in the external flow, where

+1

y-v the ot her act Is of the form 0 al-,6, -uiReaoj-c) y 't 0.

[The third set corresponding to V # s -. correspond. to the

Inviscid solutions. In order to satisfy the outer bound.-ry conditions only

thle neg~ative exponentsa are retained. The required numerical integrations

for )d 2. 2, 3. 2. and 5. 6 ware performed on the -Datatron 205 of the Caltuch

Co 'mputj in Center using a Run g a- Kutta int egration method. *0
The boundziry conditions at the. plate surface are that f, 0.and 0

* all vanish. These conditions lead to the complex secular equation for the

e igenvalue., which after sonic manipulation, can be written in the form

*(c/w,~' 1-~)(6

whr u i'aw nd 9'is an algebraic function of the value. of the
2 2

viscous solutions at y =0. *Thus * G, (a; C, Me and ~ 1(aRe; c, M*)

'For every value of c the real and ittnaginary.parts of G( w'/c) ad( 7
are plotted in tho complex pl.ne I n th nescio dete rmine the

Suppose we consider first the simnpler situation at Me: 2. 2. and
limit the discussion to neutral disturbances. Now -(w h/c)(G~i)w depends

aw
mainly on v (c) l/in w / and is practically independent of a. In fact,
it to closely. rela'ted to the jump in Reynolds stress across the -crit Ical

layer (Se9c tion 3). As- show'n (it the s -ketch on page 1.9, ;here are two solution .s

for eich value' of-(%v h/c)j 1 /wv)> 0 At c 'c~ -this quantity vanishes1,
and one obtains the inviscid disturbances a =L a5 * Re > go ;there is also

*For details the reader is referred to Reference 6.

**The authors are grateful to Mr.* Kenneith Lock for programming
and perforxning all high- spccd digital 'comnputer calculatios
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Re0  e

'Neut rat Stabil ity Diagra m 9Me 2. 2

a point on the "lower branch" of th e stabil ity diagram fo r c C c -*As cr

increases above c5  tho quantity -(ww'/c)(G 1 )w inc Ireases, monotonically,

and the eigenvalues obtained move tow~ard each other on the upper and

lowe brnces. Finally a value'c = cA is r eachdfrwihol n

soluition is obtained, and beyond which no' solutions 'exist. When c < c

only one solution is obtained and the' rest of the lower branch is traced out.

Along this bran'ch a0 - 0 and c 1-(l/M) as Re o ,o but aRe is,
3

finite.

In Figure 5 the results of the''numerical calculations are compared
31

'-~with the'Laufer, -Vre~balovich data and th~eLee s-Uin3 '4 theory. Along the

upper branc nelreh pent calculation. agrees more closely with
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hedatIn '(Ahit with It I 11,! D111- Lfill callculation) thin thii Lees-Lin calculation.
Along the lower brAndhlowvr,thvlues of nRo obtained by all throee

methods aro somewhat too low', but the present mothod gives Va~luom of'

olaabout 30 par cant hiii her than tho Dnn-Lin muthod. Thus the

Ancluaion of the tornio of order E ýseorns to be a stop in'the right direction,

At onec calculated point on tile' lowar ýbrAnch, who-re a.n 0. 030 and

:40 0 89, I finds 0.t.~ 01. so, I0 thtOvnmoeto ar 'probably

required.
Figure 6 Ahows t~he calculated amplitude distributions for one

vigen-oocilltntion on thle upper branch, and Figure 7 shows the mases flow

'and total temperature fluctuations. The agreement is surprisingly good,

and confirms our b~elirf that the lamninar stability problem at Mach numbers

'below about 2. 5 is now fairly well understood.

WI

w

cz

CC 3

''ImC -, In r oýLe ofinvite

R0e aR -W0
Neta Stbltciga 0 =5



At M0 x 5. 6 the situation is entirely different. as indicated already

in the discushion of the enorgy balance [Eq. (22), Section 3] . Again

-W w/C) (0) vanishrs at' c N c3  yielding two solutions, one corresponding

to a na and aRa -.. to ,and the other to a finite va~n of ckRe. As c~

increases beyond c8 the quAntity 7 (w/c W G), increases, .but remains

ver ,y smniall,. because0 of the f(Actor j i ý/Wtf The upper iso atad loop in

the Roo p epsnts the olutions for aký, :01 in the resgion

V C a. 40I The corresponding second solutions Nr c. C1  C2 , 3 trace
out-& now "upper loop"l. along which a~ apparently .--. 0 as Re -. & 00 and

&Re -*finite value. Presumably the single 'solutions obtained for
I (/M, ( < 5 trace out ,th res of th oer loop.

'The two loop behavior Is shown in F11gure 8 and compared with
Dercrids data . Since the miiu alue of Re0 on the upper loop
is about 10~ this loo is oflttle practical significance. The portion of
the 'lower loop draiwn' in an unbroke'n curve ha~s about the same 'shape as
Dentids data, but the points lie about an order of magnitude lower
in Re0 . However, the calculated points are themselves about one order

of magnitude higher than those obtained using tither the Lees-Lin or

Dunn-Lin methods. The value of at the Wi~t point indicated In Figure 8
to about 2.0O, which ts some indication of the inadequacy of the ordering
procedure based on

Alo Ing the dotted portion of the lower loop In Figure 8, c -4 1.

and- ) my e nt e sufficiently large to justify' the procedure of

splitting the solutions into "inviscid" and "Vi3cousO1:(See Section 2.).
:Nune~rical results wera'also obtained for the "transitional" case

Mea3 ,bu hs eulsacntyet well enough understood to be
discussed here.

5. 'Conclusions and ýFuture` Work

The present 'study of the stability'of Oh3 comp'ressitble laminar.
boundary layer 'shows that the relative Importanice of the various physical- ---- -

mechanisms governing stability changes drastically at high supersonic

Mach numbers.

1. Ins Itead of being nearly constant across the boundary layer, th e
amnplitude of the inviscid prcs sure fluctuations decrcases arkdywt



dstance from the plite surfaici at Mach 1nuinbers gr at' th n 3. Bcause
oýf this *btItAvior the rate of absorption (or production) of dtiturbanes energy

ýnvar the critical layer is greatly reduced, Ai comparred with subaonic or
sli htly supersonic flows.

2. A th sae tme he ate ofpouction of disturbance energy

nca r th su t Iirface c -a used by. the viscoius 11i phs IsahI t a In crea .go.s with Mac h

numnber'

30 .Viocoua diosipatton becomes extrlemel11y Important at high Mach
number, since it must comipen sato for, the offects mentioned In (1) and

(2). This phenomenon io alao foreshadowed by the increase. In the relative

magnitude'Of the temperature fluctuations. Accordingly, terms In the

equations of mottoi 9 aofn involving radient ofscosity or conductivity
fluctuation, or'viscous dissipations which are neglected In tits older analyses,
must be included tit high Machi numbersa.

4. For tree stream Mvach numbers of .2,and below, only a single
stability loop in the a - jc diagram Is aobtained. Calculated neutral
stability chtaracteristics and disturbance amplitude distributio'ns at

m.2are in good agreement with the Laufer -Vrobalovich data.

5. ýAt Me .56 two distinct stability loops are obtained, but
the minimumn Reynolds number (Re.) for the upper loop is so high (1 10s

that It does not have much practical significance.. The -other loop Is
qualitatively similar to the experimental results of Dcetrniradet at
M is5.6. However, the'calculated Reynolds numbers 'are still an order of
magnitude lower than the experimental values, although they are-in turn
an order of magnitude larger than tho values obtained from the Lees-Lin3'

5or Dunn-Lin methods.
6.At Mach numbers'around 3. 5 one obtains ,a transitional stability

diagram between the "almost incompressible" behavior for M0  2. 5 and
the hypersonic behavior for Me =5. 0. This regime requires additional
theoretical study.

7. ýThe structure and solutions of the linearized disturbance equations
must be carefully examined for the case c r 1. In addition there is some
question concerin th xistence of multiple''eigenvalues of the wave number
for a neutral inviscid disturbance when ýthe relative velocity between the
wave and the plate surface i s super sonic.:



.8.- Asymptotic methods utilized In all boundary layer atability

analyses, based on a "amrtll" parameter of the forml - (alke) , areo n o
longer adequate a t high Mach numbers. In fact the procedure of splitting

the solutions Into "oviscous" (rapidly-varying), add inviscid ('lowly-varyIng"),

Is no longer justified. I1t iv suggested that the cornplat6,: linearised

.disturbanice equations ahould bo integrated by me'thods similar to those

developed in the present study for the separate viscous and inviscid solutions.
9. ýSomea evidunce exists that OAe at fir't A'decreases with Increasing

Mach number, -and then approaches a conatant as viscous dissipation
bulsup. Since the wave nw~nber behaves asymptotically like (Me 2 "

the minimum critical Reynolds number Is likely to increase shrl0o

hypersonic speeds.
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